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l-lnlroduction>An imortant engineering problem is the determination of the electromagnetic fields

in microwave systems, for example tapered waveguides, horns, scatterers, closed cavities,
and open resonator. XW4mqconsider the case of axisymetric transverse electric modes.
Such problems for monoch e radiation can be reduced to consideration of an elliptic
partial differential equation similar to the Helmholtz equatiodIthods have been
deelioped for the direct numerical solution of the partial differe-ial equation. Variational

principles have been used to optimally Wpproxima values of objects of interest
i relection and transmission coefficients. An alterive approach is the reduction of

the problem consideration of an integral equation defined on the metallic walls defining
the object ikthe boundary integral method). --ese have been solved for the case of scalar
fields decribed by the Helmholtz equatio6z. The boundary integral equation method is
feasible when the Greens function is known in a computationaly convenient form, and is
very often much mor compuatio y fficient dan its competitors, particularly when the
geometry is complex. Wehmm s mi e theory and effective numerical implementation r
of such a boundary integral equation awah for the case of an axisymetric transverse
electric electromagnetic figkc. The echnique is readily generalizable to arbitrary

axisymetrifields.h ~ -

2- Mathematical and Physical Preliminaries
Consider a transverse electric field which in cylindrical coordinates p,*,z can be

expressed as

E=(V*)Re [€-iOt 'Fl(p,z)] (1)

Note that V. = e4/p. The Maxwell equations read for this case

VxE = io*iH (2)

VxH = - ieE (3)

where the dielectric constant e and permeability g will be taken to have their vacuum
values. The situation where they are piecewise constant, appropriate for example for a
waveguide with dielectric layers, can readily be treated by a generalization of the methods
to be presented. It follows direcdy frm (1) and (2) that

H--i (=V _i (F)Xe* (4)
"L pC*

If one forms the scalar product of (3) with V#, on using (4)t o eliminate H and (2) to
express E, there results after some algebra
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L('') = V y +0(5)

or on writing things out in cylindrical coordinates

IL ) (a'I 8 +F a 1 aw + EY

The time averaged Poyning vectar

r- I W*%*I (7)
4o4Lp2

and it is readily established f,,m (5) that

v.r = o (8)

Eq. (7) can conveniently be employed in testing numerical results.
In vacuum ep =1/c 2, where c is the speed of light. Define k=sc. We shall require for

what follows the outgoing Greens function associated with (5). It is, as shown in
Appendix A,

2z

K(p,p',z-z!) = pp'Jd e e-i(-) (9)

where, since r = pep+zez and r'= p'epI-z'ez , the separation

R =r-r'= [p2 + p,2 - 2pp'cos(* - *') + (z - z')2]1 /2 (10)

As is also shown in appendix A

L( K) = 8(p - p')8(z - z') (11)
(pp,)1,2

Note that K is invariant under interchange of primed and unprimed arguments. Thus

, a ,) a 18K k2K 8(p - p')(z-Z) (12)L' ,} P + 9-o' p'J4) (pp,),n
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The Greens ficion can be used to reduce the problem of determining 'P to the
solution of an integral equation on the perfectly conducting metallic surfaces assumed to
bound die system. This serves to replace the partial differential equation (U, defined on a
two dimensional domain, by a problem defined on a one dimensional domain. Ther me,
indeed, a number of such integral equations We shall deal with one such which is of the
second kind and provides a formulation which is numerically stable.

Suppose that the domain of interest is a volume V bounded by a surface S obtained by
rotating around the z axis a curve defined in a plane #mcost. Let s denote a length

along r, and suppose that r is defined by the parametric equations pfp(s) and z=z(s).
Then ds=f(dp)2 +(dz 12. The volume element is d3r-pdpdW The vector element of
surface is d2rm=nds* , where n=np(pz)ep+nz(p,z)ez is the unit normal pointing out of V.
We seek an axisymmetric function o(pz) defined on A such that

d IVK

2x'P(p',z') = 2r • (13)

or equivalently

YP(p',z') = ds (14)

r

For any point p',z' interior to V and not on r it follows from (11) and (13) that
L'"P(p',z')}=0. But on r, as shown in appendix A, because of the singular nature of K

as r-4er, eq. (13) reduces to

= (s) + JF(s',s)a(s)ds (15)

r
copy

where the inhomogeneous term ISPErTE

41(s) = 2'P(p(s'),z(s')) (16)
p(s)

is presumed to be given. The kernel Accesion For
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Fss)=n(P'z)' Vf2K(p 'z-z')]p, (s) z=z(s) p'=p(s') z'=z(s') (7F(s',s) = n~~) KppI'zz)(17)

develops a simple pole as s---', whence the integral must be interpreted as a Cauchy
principal value. T7e factor

VK = M nP(p K(PZp~z) + nz(p,z) BK(Pz (18).ap •+fVz(

Eq. (15) is the desired integral equation of the second kind for a.
For the case of horns and scatterers one is concerned with the field far from the object

This is readily determined frm the integral representation (13). To this end note that as
r'=(p'2+z' 2)'1 2 -+ oo, one has Ir-r'l r' - r. (r'fr') +-.-, whence to lowest significant
order in r/l'

2x
Si r e i( - ') - ik pp'cos(* - *') + zz'

K e ' pp' ikzz'r

p-rz--v z'  
(19)

On using (14) it is easily established from (1), (13), (17), and (19) that asymptotically as
r'/r -+ oo

E(p',z')-- r- f(O') (20)

where cos'fz'/r' , and the "scattering amplitude" is

F

[exp(- ikzcos')] J1(kpsinO') (21)

In the integrand of (19) one must evaluate all the derivatives and then express p and z in
terms of s

3-The Tapered Waveguide, Horn, and Scatterer
The configurations with which we shall be concerned are tapered waveguides , cavities

(both closed and open), horns, and scateers.Consider first a tapered perfectly conducting
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waveguide as shown schematically in fig 1. Th metallic wall indicated by the heavy line is
assumed to have an assigned thicmes and shape. The sections on the far right and left are
supposed to be long straight sections of constant radius R+ on the right and R on the lefLt.
They are joined by a tapere section the radius of which is R = R(z). The system is taken
to be enclosed by metaic walls which are assunwd to be ideally conducting. This requires
that the rwgential component of the electrical field vanish on the walls, whence, following
(1), 9F-O on the wall

For an infinite cylindrical waveguide of radius R±, as can be readily determined by
separation of variables, eq. (15) has eigensolutions

F{&)= &J(~) xp(*k~z)(22)

where n-1,2,3,....

-- F.(X)Fm(x) = ,0(jIn)2 8a. (23)

2 (24)

JI(n)O 0 (25)

Suppose that (k±) 2 is positive for n=O,1,2, .. N±, and negative otherwise. ThenThe

all modes with n> N± will decay as one advances out of the taper towards the
( t) dying out in a distance of the order of ki -1us far to the left of the

taper, IF can be well represented by the finite series

N _ N ..

'F(pz) - 0; FU(0 ) exP(ik z - i Fn( 4 exp(-ik zJ (26)

n=O

Assume that the source of the radiation is on the left. This coresponds to stipulating on
the segment r- of the boundary curve r, that is at a point z- suffciently far to the left of the
taper so that the evanescent modes generated by the taper have died out, the coeficients
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cc; of the rightward propagating modes. Moreover one must require on the segment F+ of

the boundary r, that is at a point z+ suffliently far to the right that all the evanescent

modes generated by the taper have died out, that the coefficients of the leftward

propagating solution vanish, corresponding to the absence of a source on the right, namely
that

N+

'l'(pAz + FOs F(0)xi~zz.) (27)

Also IF must vanish on the segment Fw corresponding to the perfectly conducting wall. The

task is thus to find the coefficients ctn and 0n On the perfectly conducting wall, the

segment rw, one must require that '=O. As we shall see in section 4, this is accomplished
by decomposing the problem into a number of simpler problems such that the answer is the
sum of the solutions of these simpler cases.

The case of a microwave horn is shown schematically in Figure 2. The mathematical
problem is the same as that of the tapered waveguide except that the curve r+ has moved
off to infinity where IF must vanish , which feature is automatic because of the asymptotic
properties of the Green's function. On the outside of the horn the segment of r there is
terminated suffciently far to the left that the diffacted field is negligible. As in the case of

the tapered waveguide one has to stipulate the cz and determine the 0. On the perfectly
Un

conducting wall, the segment rw, one must require that 'Y=O.
For the case of a scater as shown schematically in Figure 3, the domain of interest is

that external to the object. One must give the incident wave 'im, for example a plane wave

eft- It is then convenient to write 'V= Win + Vs. On the scatterer, the segment rw, where
the electric field and hence IF must vanish, the scattered wave 'Ps satisfies

' 5(.p(s),z(s)) = - 'Fin, where s denotes arc length along the curve r, the intersection of

the outside of the scatterer and a plane of constant azimuth *. Clearly one can deal with the
case where the scatterer is inside A waveguide or horn in a parallel way by combining the
problems already described.

For a closed cavity the domain is the interior of the object, the hatched region of Figure
2. In this case the frequency o) is not determined by an external agency, rather it is found to
be an eigenvalue, of which there are an infinite denumerable set. It is is readily seen that the
eigenvalues wX are all real and positive. One multiplies (5) by W* and integrates over the



volume of the cavity, whence on using Gauss's theorem and the requirement that W vanish
on the metallic wall it follows, even when e and g are functions of position, that

drIV19I2

0 28

For the cavity the term (s') in (15) vanishes, the integral equation is homogeneous, and
has solutions only for characteristic values of o 2.

For the case of an open cavity, like the open resonator shown schematically in Figure
4, the associated integral equation is homogeneous, but the eigenvalues are complex
because of radiation loss. The most interesting case of low loss systems where the
eigenvalues are almost real, can be dealt with very efficiently and the least lossy
eigenvalues found efficiently.

4. Reduction of Problems I and II to Sequences of Diriehlt Problems
While the problems presented in section 3 are well-posed, the analytical and numerical

apparatus for dealing with them is not as well developed as that for classical problems of
mathematical physics, such as Dirichlet and Neumann problems for the Helmholtz *
equation3. Therefore, we will reduce them to finite sequences of Dirichlet problems for (5)
on perspicuously constructed regions, and later deal with them numerically.

Consider the case of the horn depicted in Figure 2. Recall that one stipulates the waves

incident from the left on r- ( at z=z_) by giving the coefficients C in (26), and requires
n

that 'P vanish on the metallic wall corresponding to the curve rw. In order to deal with this
situation and determine the unknown coefficients V characterizing the reflected waves we

n
construct a finite sequence of auxiliary functions 4k defined in the domain Q in pz interior
to the curve r r-+rw + the sector of a circle the radius of which tends to infinity, as
indicated in Figure 2. The desired solution 'P can be expressed as a linear combination of
these and the coefficients detemined in a convenient manner.The j are solutions of the
following Dirichlet problem (where for the horn problem we suppress any unnecessary
superscripts and subscripts -).

a) For all m 1,2,...,2N, m satisfies Equation (32) inside LI
b) Forallm-1,2,...,2N, 46 vanishes on rw. (29)
c) Forall m l,2,...,N, our-
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4I. - Fm (exp(ikm z) (30)

d) For all m = n+l,n+2,...,2n, on Fr

Omn= Fm(0 exP(0k4-_) (31)

Far to the left of the end of the horn each of the 4m must have a representation of the form
of (26), namely

N N_

<'m(P,z) I Am,n Fn(~xp(kz) + 1:Bm, Fn(j'ri.io) (32)
n- I n- I

Write

2n

I'(p,z) = Ym Om(p,z) (33)
m=l

Then on using both (26) and (32) combined with (33) to express there results

2n N 2n N

Tm n AmnFn(j)exp(iknz) + M- m Bm,nFn(r)exP(-iknz)
ml n=1 ~ n=1

N N

1: Xc~(iknz)+ Yjn F,{J) exp(-ikcz) (34)
n=0 n=O

Muliply (34) by F{-) Then in virtue of the orthogonality condition (23) it follows on

replacing s by n that for n--1,2,3...N
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2N_ 2N-

Ya^mAmn exp(ika) + Ya ̂ mBmnu exp(-ikoz) (35)
m=I rnI

= %, exp~ikz)+ On exp(-ik z)

The coefficients of exp(kgz) and exp(-ikez) in (35) must vanish separately, as can be seen
by multiplying (35) by exp(±ikoz) and integrating with respect to z over a distance 27rcn.
Thus for n=1,2,3...N_

2N_
~mA n = 0

m=l

(36)
2N_

m-1

Eqs. (36) are a system of 2N_ linear equations for the unknown N- coefficients ym and the

unknown N- coefficients 06. With the coefficients thus determined (33) is the desired
solution since it satisfies the differential equation (6) and alm the boundary conditions.
For the case of the tapered waveguide the prcedure is similar. The domain Q is defined by
the z axis and the curve r=r_ u r, u r+ (see Figure 1). One defines auxiliary functions

as follows.

a) For all m = 1,2,...N..., Om satisfies Equation (32) inside -.
b) Forallm= 1,2,...,2N_, 0,, vanishesonrw+r+. (37)

c) Forall m= 1,2,...,N_, onr-

d) FM (yR ) ex-,ik Z) (38)

d) For all mn - +1N+2,. ..,2N., on r-.

=i FM ~ x(i 3 .z (39)
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One defines auxiliary functions functions %pm such that

a) For all m - 1,2,...,2.N+, Wm satisfies Equation (32) inside Q.
b) For all m = 1,2,...,2N+, I*m vanishes on Fw + r_. (40)
c) Forall m= 1,2,...,N+, on 1+

m = Fim () exp(ik+z) (41)

d) For all m = N++I,N++2, ... ,2N+, on r+

'InFmR =~ F.(i 1~iz (42)

Then far to the right of the taper

N+ N+

mpz)= A-. F.(%) exp(ik~z) + B-' Fri() e -ik+zJ (43)OM(PZ +j nL j I
n=1 n=1

N+ N+

'IPm(P A+='"A Fn( tp(ik+z + B Fn( ex(ik+z) (44)
--1 n=1

and far to the left of the taper

N. N..:N- N-,
1 n ml )-kn I m~n rR-L nz

n-I n-I
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N. N.

'Pm(PAz A+- Fn()xPk)- B - Fn (P) exp(-ikz (46)

n-I n-i
The coefficients in (43) - (46) are determined by evaluating the solutions of the integral
equations for bn and 'In at an appropriate number of suitably chosen points.

Next one writes

2N_ 2N+

I(p,Z) = XInA'M + Xlh'fm (47)
mffi I m=

On equating the asymptotic representations (26) and (27) on their respective domains ofvalidity , and using the orthogonality of the Fn and integration over z as was done for the
horn, one obtains the algebraic system

2N_ 2N+

+ m = +'n  (48)
m=1 m=1i

2N_ 2N+

2N- 2N+

Bm,nm + ,Bm,n1m n0 (50)

2N_ 2N+XBym I X +'TIm = n (51)

m= m=-1

"2NI 2N II II I I I I
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Eqs. (48) - ( 51) are a set of 2(N-+ N+) linear equations for the N_ complex numbers yin,

the N+ complex numbers i1m, the N_ complex numbers n, and the N+ complex numbers
+

an . Once these have been found the solution TF(pz) is completely known via (47), and

transmission and reflection are determined by the coefficients +r and P.

5-Nystrom method for the solution of second kind integral equations
(SKIEs)

We have reduced the problem of determining the electric field to consideration of (15),
a second kind integral equation (SKIE). This can be dealt with numerically by
discretization via an appropriate quadrature formulae.

We will define an n-point quadrature rule on the interval [091] as a finite sequence of
pairs (xlt 1).i=1,2....n, where xIj[OL] for all i e[1,n]. For a function V:
[0,L]-+R1, we will look upon the sum

n
'n = NO WiV(x) (52)

i=I

as an approximation to the integral L

J v(x)dx . (53)

For the cases considered, we reat L is the length of the arc r. We will say that the family
of quadrature formulae{rn= n x , n },i= 1,2,...,nl,n= 1,2..., has aconvergence

rate m (mZl) for the function V: [OL]-Rl. if there exist numbers A>O and integers N>O
such that

L
A

foralln > N.

In order to solve the integral equation

L
0(x) + J F(t,x) o(t) dt = *(x) (55)

the Nystrom a!gorithm replaces (32) with a system of linear algebraic equations
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n

aj + 1 V F(xji) 0 = (xi), (56)

j-1

with i 1,2,...,n, and , 2 ...o the coefficients of an appriately chosen

quadrature formulae. We will denote the matrix of the system (27) by Alb and view the

solution o,o,....cjn of (27) as an approximation t the solution It of (26) at the nodes
XIXZ..., Xn.

Noe ht n ~ ml hecoficentW142 n
Note that in gener, the coefficients !, .. of the quadrature formula depend

on the point xi at which the integral (32) is being approximated. When the kernel F is
smooth, this can be avoided by choosing a single quadatue formula, such as the end-point
corrected trapezoidal rule, that will p well for all i = IA2.. .,i. However, in many
applications the kernel is singula, and the distribution of its singularities usually forces a
special choice of a quadrature formula for each node

The following theorem 4 is the principal justification for the use of the Nystrom
algorithm for the solution of SKIEs. Suppose that Equation (32) has a unique solution,
and that its kemel F and right-hand side # are continuous. Suppose further that a family

' 1li) of quadrature formulae is such that for some B > 0

nn

I _ s(57)

for all n = 1,2,. Then there exists a number C > 0 such that for any n a 2 and

where k is the convergence rate of the formulae [ii n ,

S. Description of the Algorithms
Now, armed with the appams developed in the preceding sections, we are prepared to

construct algorithms for the solution of the original problems in Section 3. Frst, we
describe an algorithm for the solution of the horn problem.
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AlgorthI~b
Step 1. Construct the curve F by appending the segment F_ to the user-specified

waveguide boundary (see Figure 5). Use spline package FITPACK5 to construct an equi-
spaced discretization of the resulting curve. Select the N nodes into which the boundary F
is to be discretized.

Step 2. Convert the problem into a sequence of exterior Dirichlet problems in the
region Q as described in section 4. For each i = 1,2,...,2N, convert the corresponding

Dirichlet problem into a second kind integral equation (SKIE) on F.
Step 4. For each i . 1,2,...,2N, discretize the obtained SKIE via the Nystrom

method based on the quadrature formulae of Appendix C, obtaining a system of linear
algebraic equations of dimension 2N.

Step 5. For each i = 1,2,...,2N, solve the linear system obtained on the preceding
step by means of a standard Gaussian elimination subroutine from LNPACK 6 . View the
solution as an approximation to a on r solving the underlying Dirichlet problem.

Step 6. Find the coefficients y1,y7.'-, in equation (33) by solving (36)
Step 7. Linearly combine the solutions of the 2N linear systems obtained on the

preceding step according to the formula (33). The result is a distribution a on Y2 whose
field is a solution of the problem.

Step 8. For each point xER2 where the solution of the horn problem is desired,
evaluate it by approximati the integral

f o(t) G(x,t) dt (59)

F

by the trapezoidal sum

N
h ia(t) G(ti,x) (60)

with {ti},i = 1,2, ... N, the nodes in the discretization of F, and h the sampling distance
between the adjacent nodes titi.l.

Next we describe an algorithm for the solution of the tapered waveguide problem.

Algohm 2
Step 1. Construct the curve F by appending the segments F+, and F to the desired part

of the boundary of the user-specified waveguide F (see Figure 1). Use spline package

FITPACK 5 to construct an equispaced discretization of the resulting curve. Select the

number N of nodes into which the boundary F is to be discretized.
Step 2. Convert the problem into a pair of sequences of interior Dirichlet problems in

the region ,.
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Step 3. For each i - 1,2,.. .,2N, convert the corresponding Dirichiet problem into a
second kind integral equation on r.

Step 4. For each i - 12,.. .,2NI . convert the cort.sonding Dirichiet problem into a

second kind integrul equation an r.
Step S. For each t = 1,2,.. .,2-N, discretize the obtained SIE via the Nystro

method based on the quadrature formulae of Appendix C, obtaining a system of linear
algelraic equations of dimiension N

Stop 6. For each im -1Z2..JN2K), discretze the obtained SKlE via the Nystrom
method buaed on the quaur formulae of Appendix C, obtaining a system of linea
algebraic equations o~dimension N.

Step 7. For each i - 1,2.. .,2?L, solve the linear system obtained on dhe preceding
step by means of a standard Gaussian elimination subroutine from UNPACK 6. View the
solution as an apWiuinto the density a on r solving the underlying Dirichiet Problem

Step S. For each i = 1,2.. .,2N+, solve the liea system obtained on the preceding
step by means of a standard Gaussian elimination subroutine from LINPACL. View the
solution as an apoiainto the density of dipole distribution on r solving the,
undelying Dirichiet. problem.

Step 9. Find the coefficients . and il I. .,,'12N-. in the expansion (47)
Step 10. Linearly combine dhe solutions of the 2(N- + N+) linear system obtained on

the preceding step according to the formula (47). Mwe result is a distribution a on r whose,
field is a solution of t tapered waveguide problem.

Step 11. For each point xeQ where the solution of problem is desired. evaluate it by
-~xmtn the inega

f a(t) IF(x,t) dt (61)
r

by the trapeaidal sum

N
h a(ti) F(tix) (62)

with (qi), i = 1,2.. .,N the nodes in the discretization of G3, and h the sampling distance
between the adjacent nodes tjitj.

6-Results
A fix tra program has been written implementing algorithms I and H of this paper. The

program has been tested on a variety of problems. We present a detailed description and the
results of four such numerical experiments.
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Example 1 - Tapered Waveguide
The waveguide defined in fig. 5 has a left hand asymptotc radius of 0.524 cm. and a

right hand asymptotic radius of 0.743 cm. The shape was assigned by stipulating a dense

set of points. which wene then fitted to a spline, a convenient design procedure. The
Wansluon distance is roughly 2.5 cm. The operating frequency chosen is 3.2Xt101 sec"1.

This leads to one prpaating mode on the farleft of the tapered section, and twopropagtig modes catefr rght. The boundary employed for the calculation was first

aroIatedas shown in fig. 6, adding the piecewise linear curves r+ and r- to provide a
clsed bomrding srface for the thre dirnmnsioal dmin obtained by rating the
boundary round the z axis. This shape was then - to provide the mooth curve of
fig.7, which was then discretized into 90 roughly equally spaced nodes. Also indicated
are the test points employed in computing the modal expamion of the solution. The results
for the lines of constant real part of ' are displayed in fig. 8. The calculation took six
minutes of CPU time on aVAX 780.

| Example 2 -Open Waveguide
hcalculaion uses a semi-infinite waveguide of 2 cm. inner radius and 0.25 cm.

thickness. The operating frequency is 6x0 10 sec - 1, resulting in one propagating mode on
the far left. The resampled boundary is shown in fig. 9. This was discretized into 180
nodes, with the points most dense in the neighborhood of the return in the boundary curve
at the end of the waveguide . The cakulation took 17 minutes of CPU time on a Vax 8600.
The resulting lines of constant real part of T are shown in fig. 10. The resulting radiation

patternu is shown in fig. (11) where f(e)12 =Ei202 is plotted vs. the polar angle 0 that the
direction of observation makes with the axis if the waveguide.

Example 3 - Microwave Horn
The internal far left radius of the horn is 2 cm., and its wall thickness 0.25 cm. The

frequency employed is 6x10 10 sec-1, yielding one propagating mode on the far left. The
resampled boundary is shown in fig. 12. It was discretized into 180 nodes, with the nodal
density greatest near the return in the curve. The calculation took 17 minutes of CPU time
on a Vax 8600. The lines of constant imaginary part of 'P are shown in fig. 13. The

radiation pattern is displayed in fig. 14, where If(0)12 = 1E12/r2 is plotted vs. the polar angle

0 that the direction of obervation makes with the axis if the waveguide.

Example 4 -Injection Trough a Hole in a Metallic Wal
The far left radius of the waveguide is 3 cm. and its wall thickness is 2 cm. The

frequency employed is 6x 1010 sec7., yielding one propagating mode on the far left The
resampled boundary is shown in fig. 17. It was discreuzed into 180 nodes. The calculation

took 13 minutes on a Vax 8600. The lines of constant real part of 'P are shown in fig. 17

and the lines of constant imaginary pat of I' are displayed in fig. 17. The radiation pattern

is displayed in fig. 18. where f(0)12 =11 2/r2 is plotted vs. the polar angle 0 that the
direction of observation makes with the axis if the waveguide.

Appendix A - The Green's Function
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Recall that R = Ir -r = [p2+p'2-2ppcos("')+(z-z')2] 12 where p,*,z are
cylindrical coordinates. Then the three dimensional Gree's function

(Al)
satisfies

V2G+k2G 8(r - r) 8(p - p)8(z z')(+ - (2'))
P

Write

G(p,p',4z-'z-z') = F(p,p',-',z-z) ei("'f) (A3)

Then it is readily calculated on using the properties of the Dirac delta function that

iV '  2iF+ i+2- 1 8(p- p')8(z- z')8( - ('))

Let
2x

F(p,p',z-z') =Jd* F(p,p,4-*',z-z') (AS)

Then it follows from (A4) on integraiing over one period in * that

V* + 1- 8(P-P'W6z-z') (6

Define

2x

K(p,p',z-z') = pp' F(p,p',z-z') = pp'Jd* e-i("')G(p,p',".j',z-z') (A7)

Note that K is invariant under interchange of primed and unprimed arguments. Then (A6)

impies

Vt-K) + ( 2 - IK 8(p-p)(z-z') (A8)
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But

K 2 2 aK (A9)

while

VK V21K 2 K(A)

-,-- -- o2  _- +L (A12)

kp) p p2 ap p2

whence (AS) implies

-V 8(p-p)8+zk2 (All)

and on using the properties of the Dirac delta function

Lf K) o. VK' +- !L K B(P-P')8(z-z') A2

pi ) p2 (pp)It2(12

We wish to derive an integral representation for ' of the form

T, 'P W(pt,z) = fds a(s) [n.VK(p,p',z-z')] p=(s) z-z(s) (A13)

r

where r is that curve which when rotated around the z axis generates the surface S
enclosing the volume V containing the point r'. The element of arc length along C is ds.
Note that in virtue of its invariance under interchange of primed and unprimed arguments it
follows from (All) that K satisfies L'(K)=O, whence it is evident that IF as defined by
(A16) satisfies L'1'7) at all points p',z' interior to the domain enclosed by r.

In order to derive an integral equation for the function a, assuming that ' is given on
r, we consider a point on Fcorresponding to s', and a point p',' inside the area in
question a distance e from r as measured along the unit outward pointing normal n(s!) as

shown in Figure 19. Pick e << 8 << the radius of curvature at s', and break the domain of
integration up into a segment of width 28 straddling the point s, which segment may be
considered locally flat, and the rest of F.
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As p',z' approaches r one sees from IA7) that the integrand diverges. The major
contributions to the integral come from the denominator in the neighborhood of "' where
R2 -(p--p') 2 +(z-z')2+p'(-') 2. On keeping only dominant term it folows that

4K ,, p, 2 +(z-z') 2 +P'2 (- ' 2

-2 p2  ,)2 +(z-z)2+p,2 (.,) 2*'-

" 2p'In[ [(p-p')2 +(z-z) 2+p' 2(4-')2) +p'(-') (A14)

- - 2p'ln ' (p--p') 2+(z-z') 2

Thus the contribution to (A15) of the segment of width 28 can be written to good
approximation as
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'+8

1=-O(S") fds [n.V(pn'n4(p;-p)2+(z-)2 )--p(s) z=z(s)

s'-8

s'+8

= - a(s")p' fds {jin[n2+(s-')2I} , (Al5)
s'-8

S'+8

- 2a(s")p' ds e

f e2+(S-S')2

- 2a(s")p'arc .-

Clearly in the limit e--O one has

I = 2zo(s")p' (A16)

Thus in the limit that the point p',z' lies on C eq.(15) yields

2'(p(s'),z(s')) = Pfd I.z2K(p -Z')A7''p, U (s') + P js O(S) Int I P' .p-p(s) z-z(s) (A17)

r
where P denotes the Cauchy principle value of the integral. On introducing the definitions
of (21) and (23) this is the desired integral equation.
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Fig. 1 Schematic diagram of a Upered waveguide.
Fig. 2 Schematic diagram of a barn
Fig. 3 Schmatic diagram of a cavity or scattere. For the scatee dhe domain is

the exterior of the boundary curve, for the cavity the domain is the cross
hatched interor.

Fig. 4 Schematic diagram of an open resow"t.
Fig. 5 The waveguide of example 1 as specified by the user.
Fig. 6 Ila waveguidt of example 1 afterprliinary eoetc rocs&ng
Fig. 7 Reampled wavguide, with test points for example 1.
Fig. 8 Equipotentials of the real part of the solution of e-amle 1.
Fig. 9 Resampled waveguide with te points for exmpe2.
Fig. 10 1qurotdis Of dhe imaginary part of the solution to example 2.
Fig. I11 Far feld amplitude as afunction of angle for example 2.
Fig. 12 Resampled, waveguide and test points for example 3.
Fig. 13 Eqioetasfor the imaginary paut of the solution for example 3.
Fig. 14 For fedamplitude as a function of angle for example 3.
Fig. 15 Resampled waveguide, and test points for example 4.
Fig. 16 Eqioetaafrthe real part of the solution for example 4.
Fig. 17 ipotentials for the imaginay part of the solution for example 4.
Fig. 18 Field ampliftideas a fiunconof angle for example 4.
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Figure 5

The Woveguide in Example 1 as Speoified by the User
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Figure 6

The Waweguide in Example 1 Rfter Preliminary Geometrical Processin(
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Figure 7

Resompled Waveguide with Test Points in Example 1
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Figure 8

Equipotentiol Lines of the Real Port of the Solution
in Example 1
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Figure 9

Resompled Wavegulde with Test Points in Example 2
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Figure 10

Equipotentiol Lines of the of the Imaginary Port
of the Solution in the Example 2
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Figure 11

For-Field Amplitude as a Function of Angle
in Example 2
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Figure 12

Resompled Waveguide with Test Points in Example 3
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Figure 13

Equipotential Lines of the Imaginary Port of the Solution
in Example 3
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Figure 14

For-Field Amplitude as a Function of Angle
in Example 3
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Figure 15

Resompled Waveguide wit.h Test Points In Example 4
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Figure 16

Equipotential Lines of the Real Port of the Solution
in Example 4
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Figure 17

Equipotential Lines of the Imaginary Part of the Solution
in Example 4
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Figure 18

For-Field Rmplitude as a Function of Angle
In Example 4
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Fig. 19


